Texture classification using rotation invariant models on integrated local binary pattern and Zernike moments

نویسندگان

  • Yu Wang
  • Yongsheng Zhao
  • Yi Chen
چکیده

More and more attention has been paid to the invariant texture analysis, because the training and testing samples generally have not identical or similar orientations, or are not acquired from the same viewpoint in many practical applications, which often has negative influences on texture analysis. Local binary pattern (LBP) has been widely applied to texture classification due to its simplicity, efficiency, and rotation invariant property. In this paper, an integrated local binary pattern (ILBP) scheme including original rotation invariant LBP, improved contrast rotation invariant LBP, and direction rotation invariant LBP is proposed which can effectively overcome the deficiency of original LBP that is ignoring contrast and direction information. In addition, for surmounting another major drawback of LBP such as locality which can result in the lack of shape and space expression of the holistic texture image, Zernike moment features are fused into the improved LBP texture features in the proposed method because they comprise orthogonal and rotation invariant property and can be easily and rapidly calculated to an arbitrary high order. Experimental results show that the proposed method can be remarkably superior to the other state-of-the-art methods when rotation invariant texture features are extracted and classified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis

Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...

متن کامل

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

On Pattern Classification Using Statistical Moments

Selecting appropriate feature extraction method is absolutely one of the most important factors to archive high classification performance in pattern recognition systems. Among different feature extraction methods proposed for pattern recognition, statistical moments seem to be so promising. Whereas theoretical comparison of the moments is too complicated, in this paper, an experimental evaluat...

متن کامل

Diagnosis of Masses in Mammographic Images based on Zernike Moments and Local Binary Attribute

Masses are important elements in the diagnosis of breast cancer. Many studies discussed the problem of detection and/or diagnosis of masses and most of these researches were based on shape descriptors to make decision. Textural descriptors contribute in indicating the presence of masses. Morphological descriptors determine their malignancy degree. Thus, we decided in our work to make a combinat...

متن کامل

Performance Analysis of Local Binary Pattern Variants in Texture Classification

-Texture classification is a major issue in image analysis and pattern recognition. A number of methods are proposed in the literature including Local Binary Pattern (LBP). The LBP variant (s) plays an active role to extract texture features for texture classification. These are rotation invariant, noise sensitive or noise insensitive mehods. Each method has its own advantages and disadvantages...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014